Nuprl Lemma : equiv-path_wf
ā[G:jā¢]. ā[A,B:{G ā¢ _:cš}]. ā[f:{G ā¢ _:Equiv(decode(A);decode(B))}]. (EquivPath(G;A;B;f) ā {G ā¢ _:(Path_cš A B)})
Proof
Definitions occuring in Statement :
equiv-path: EquivPath(G;A;B;f)
,
universe-decode: decode(t)
,
cubical-universe: cš
,
cubical-equiv: Equiv(T;A)
,
path-type: (Path_A a b)
,
cubical-term: {X ā¢ _:A}
,
cubical_set: CubicalSet
,
uall: ā[x:A]. B[x]
,
member: t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
equiv-path: EquivPath(G;A;B;f)
,
member: t ā T
,
all: āx:A. B[x]
,
uimplies: b supposing a
Lemmas referenced :
term-to-path-wf,
cubical-universe_wf,
csm-cubical-universe,
equiv_path_wf,
equiv_path-1,
equiv_path-0,
istype-cubical-term,
cubical-equiv_wf,
universe-decode_wf,
istype-cubical-universe-term,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
thin,
instantiate,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
hypothesisEquality,
hypothesis,
sqequalRule,
Error :memTop,
dependent_functionElimination,
independent_isectElimination,
universeIsType
Latex:
\mforall{}[G:j\mvdash{}]. \mforall{}[A,B:\{G \mvdash{} \_:c\mBbbU{}\}]. \mforall{}[f:\{G \mvdash{} \_:Equiv(decode(A);decode(B))\}].
(EquivPath(G;A;B;f) \mmember{} \{G \mvdash{} \_:(Path\_c\mBbbU{} A B)\})
Date html generated:
2020_05_20-PM-07_30_30
Last ObjectModification:
2020_04_28-PM-10_11_18
Theory : cubical!type!theory
Home
Index