Nuprl Lemma : cubical-beta
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}]. ∀[u:{X ⊢ _:A}].  (app((λb); u) = (b)[u] ∈ {X ⊢ _:(B)[u]})
Proof
Definitions occuring in Statement : 
cubical-app: app(w; u)
, 
cubical-lambda: (λb)
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-id-adjoin: [u]
, 
pscm-id-adjoin: [u]
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
, 
cubical-app: app(w; u)
, 
presheaf-app: app(w; u)
, 
cubical-lambda: (λb)
, 
presheaf-lambda: (λb)
, 
cc-adjoin-cube: (v;u)
, 
psc-adjoin-set: (v;u)
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
csm-ap-term: (t)s
, 
pscm-ap-term: (t)s
Lemmas referenced : 
presheaf-beta, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].    (app((\mlambda{}b);  u)  =  (b)[u])
Date html generated:
2020_05_20-PM-02_30_45
Last ObjectModification:
2020_04_03-PM-08_41_01
Theory : cubical!type!theory
Home
Index