Nuprl Lemma : cubical-beta

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}]. ∀[u:{X ⊢ _:A}].  (app((λb); u) (b)[u] ∈ {X ⊢ _:(B)[u]})


Proof




Definitions occuring in Statement :  cubical-app: app(w; u) cubical-lambda: b) csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-id-adjoin: [u] pscm-id-adjoin: [u] csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-id: 1(X) pscm-id: 1(X) cubical-app: app(w; u) presheaf-app: app(w; u) cubical-lambda: b) presheaf-lambda: b) cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) cube-cat: CubeCat all: x:A. B[x] csm-ap-term: (t)s pscm-ap-term: (t)s
Lemmas referenced :  presheaf-beta cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].    (app((\mlambda{}b);  u)  =  (b)[u])



Date html generated: 2020_05_20-PM-02_30_45
Last ObjectModification: 2020_04_03-PM-08_41_01

Theory : cubical!type!theory


Home Index