Nuprl Lemma : presheaf-beta

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}]. ∀[u:{X ⊢ _:A}].
  (app((λb); u) (b)[u] ∈ {X ⊢ _:(B)[u]})


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) presheaf-lambda: b) pscm-id-adjoin: [u] psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B presheaf-term: {X ⊢ _:A} uimplies: supposing a presheaf-lambda: b) presheaf-app: app(w; u) pscm-ap-term: (t)s pscm-ap: (s)x pscm-id-adjoin: [u] pscm-id: 1(X) pscm-adjoin: (s;u) psc-adjoin-set: (v;u) all: x:A. B[x] implies:  Q presheaf-type: {X ⊢ _} presheaf-type-at: A(a) pi1: fst(t) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  presheaf-term-equal pscm-ap-type_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-id-adjoin_wf pscm-ap-term_wf presheaf-app_wf presheaf-lambda_wf pscm-ap-type-at I_set_wf presheaf-term_wf presheaf-term_wf2 small-category-cumulativity-2 presheaf-type_wf ps_context_wf small-category_wf equal_wf squash_wf true_wf istype-universe psc-adjoin-set_wf subtype_rel_self psc-restriction-id subtype_rel-equal presheaf-type-at_wf psc-restriction_wf cat-id_wf presheaf_type_at_pair_lemma cat-ob_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache hypothesis sqequalRule lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity independent_isectElimination Error :memTop,  functionExtensionality_alt lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies productElimination imageElimination universeEquality imageMemberEquality baseClosed natural_numberEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].
\mforall{}[u:\{X  \mvdash{}  \_:A\}].
    (app((\mlambda{}b);  u)  =  (b)[u])



Date html generated: 2020_05_20-PM-01_33_51
Last ObjectModification: 2020_04_02-PM-06_33_28

Theory : presheaf!models!of!type!theory


Home Index