Nuprl Lemma : presheaf-app_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠB}]. ∀[u:{X ⊢ _:A}].
  (app(w; u) ∈ {X ⊢ _:(B)[u]})


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) presheaf-pi: ΠB pscm-id-adjoin: [u] psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-term: {X ⊢ _:A} subtype_rel: A ⊆B all: x:A. B[x] implies:  Q presheaf-type: {X ⊢ _} presheaf-app: app(w; u) pscm-ap-type: (AF)s presheaf-type-at: A(a) pi1: fst(t) I_set: A(I) functor-ob: ob(F) psc-adjoin: X.A psc-adjoin-set: (v;u) pscm-ap: (s)x pscm-id-adjoin: [u] pscm-adjoin: (s;u) squash: T prop: uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q pscm-id: 1(X) presheaf-pi: ΠB presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) presheaf-type-ap-morph: (u f) pi2: snd(t) psc-restriction: f(s) so_lambda: λ2x.t[x] so_apply: x[s] istype: istype(T)
Lemmas referenced :  pscm-ap-type_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-id-adjoin_wf presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma cat-ob_wf cat-arrow_wf I_set_wf psc-restriction_wf presheaf-term_wf small-category-cumulativity-2 presheaf-pi_wf presheaf-type_wf ps_context_wf small-category_wf equal_wf squash_wf true_wf istype-universe psc-restriction-when-id cat-id_wf pscm-ap_wf pscm-id_wf subtype_rel_self iff_weakening_equal presheaf-type-at_wf subtype_rel-equal psc-restriction-id subtype_rel_weakening ext-eq_weakening psc-adjoin-set_wf subtype_rel_wf psc-adjoin-set-restriction cat-comp-ident subtype_rel_dep_function cat-comp_wf cat-comp-ident1 cat-comp-ident2 subtype_rel_set equal_functionality_wrt_subtype_rel2 pscm-id-adjoin-ap pscm-ap-restriction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule inhabitedIsType lambdaFormation_alt setElimination rename productElimination dependent_functionElimination Error :memTop,  functionIsType universeIsType equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies lambdaEquality_alt dependent_pairEquality_alt imageElimination universeEquality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed promote_hyp applyLambdaEquality functionEquality hyp_replacement independent_pairFormation productIsType productEquality setEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].
\mforall{}[u:\{X  \mvdash{}  \_:A\}].
    (app(w;  u)  \mmember{}  \{X  \mvdash{}  \_:(B)[u]\})



Date html generated: 2020_05_20-PM-01_31_05
Last ObjectModification: 2020_04_02-PM-03_05_49

Theory : presheaf!models!of!type!theory


Home Index