Nuprl Lemma : presheaf-pi_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  B ∈ X ⊢ )


Proof




Definitions occuring in Statement :  presheaf-pi: ΠB psc-adjoin: X.A presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-pi: ΠB presheaf-type: {X ⊢ _} and: P ∧ Q all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B
Lemmas referenced :  cat-ob_wf I_set_wf cat-id_wf subtype_rel-equal psc-restriction_wf equal_wf squash_wf true_wf istype-universe psc-restriction-id subtype_rel_self iff_weakening_equal cat-arrow_wf cat-comp_wf psc-restriction-comp presheaf-type_wf psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 ps_context_wf small-category_wf presheaf-pi-family_wf subtype_rel_dep_function presheaf-type-at_wf psc-adjoin-set_wf presheaf-type-ap-morph_wf psc-adjoin-set-restriction cat-comp-assoc cat-comp-ident2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalRule productElimination thin productIsType functionIsType universeIsType extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality equalityIstype because_Cache independent_isectElimination instantiate lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_pairEquality_alt setElimination rename lambdaFormation_alt Error :memTop,  hyp_replacement functionEquality independent_pairFormation functionExtensionality_alt functionExtensionality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].    (\mPi{}A  B  \mmember{}  X  \mvdash{}  )



Date html generated: 2020_05_20-PM-01_29_15
Last ObjectModification: 2020_04_02-PM-03_02_05

Theory : presheaf!models!of!type!theory


Home Index