Nuprl Lemma : presheaf-pi-family_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[I:cat-ob(C)]. ∀[a:X(I)].
  (presheaf-pi-family(C; X; A; B; I; a) ∈ Type)


Proof




Definitions occuring in Statement :  presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) psc-adjoin: X.A presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] uimplies: supposing a squash: T true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_apply: x[s]
Lemmas referenced :  cat-ob_wf cat-arrow_wf presheaf-type-at_wf psc-restriction_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 psc-adjoin-set_wf all_wf equal_wf presheaf-type-ap-morph_wf cat-comp_wf subtype_rel-equal psc-restriction-comp psc-adjoin-set-restriction squash_wf true_wf istype-universe I_set_wf subtype_rel_self iff_weakening_equal presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache instantiate dependent_functionElimination lambdaEquality_alt independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed Error :memTop,  equalityTransitivity equalitySymmetry universeIsType universeEquality productElimination independent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[I:cat-ob(C)].
\mforall{}[a:X(I)].
    (presheaf-pi-family(C;  X;  A;  B;  I;  a)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_28_41
Last ObjectModification: 2020_04_02-PM-01_56_27

Theory : presheaf!models!of!type!theory


Home Index