Nuprl Lemma : psc-adjoin-set-restriction
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[J,K,g,v,u:Top].  (g((v;u)) ~ (g(v);(u v g)))
Proof
Definitions occuring in Statement : 
psc-adjoin-set: (v;u)
, 
psc-adjoin: X.A
, 
presheaf-type-ap-morph: (u a f)
, 
presheaf-type: {X ⊢ _}
, 
psc-restriction: f(s)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-type: {X ⊢ _}
, 
presheaf-type-ap-morph: (u a f)
, 
psc-adjoin-set: (v;u)
, 
psc-adjoin: X.A
, 
all: ∀x:A. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
psc-restriction: f(s)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
psc_restriction_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
istype-top, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectElimination, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
applyEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[J,K,g,v,u:Top].
    (g((v;u))  \msim{}  (g(v);(u  v  g)))
Date html generated:
2020_05_20-PM-01_27_20
Last ObjectModification:
2020_04_02-AM-11_21_10
Theory : presheaf!models!of!type!theory
Home
Index