Nuprl Lemma : psc-adjoin-set-restriction

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[J,K,g,v,u:Top].  (g((v;u)) (g(v);(u g)))


Proof




Definitions occuring in Statement :  psc-adjoin-set: (v;u) psc-adjoin: X.A presheaf-type-ap-morph: (u f) presheaf-type: {X ⊢ _} psc-restriction: f(s) ps_context: __⊢ uall: [x:A]. B[x] top: Top sqequal: t small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} presheaf-type-ap-morph: (u f) psc-adjoin-set: (v;u) psc-adjoin: X.A all: x:A. B[x] pi2: snd(t) pi1: fst(t) psc-restriction: f(s) subtype_rel: A ⊆B
Lemmas referenced :  psc_restriction_pair_lemma presheaf_type_ap_morph_pair_lemma istype-top presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis axiomSqEquality inhabitedIsType hypothesisEquality isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType instantiate applyEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[J,K,g,v,u:Top].
    (g((v;u))  \msim{}  (g(v);(u  v  g)))



Date html generated: 2020_05_20-PM-01_27_20
Last ObjectModification: 2020_04_02-AM-11_21_10

Theory : presheaf!models!of!type!theory


Home Index