Nuprl Lemma : presheaf-lambda_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}].  ((λb) ∈ {X ⊢ _:ΠB})


Proof




Definitions occuring in Statement :  presheaf-lambda: b) presheaf-pi: ΠB psc-adjoin: X.A presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-term: {X ⊢ _:A} subtype_rel: A ⊆B presheaf-lambda: b) presheaf-pi: ΠB all: x:A. B[x] presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) uimplies: supposing a squash: T true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q presheaf-type: {X ⊢ _} presheaf-type-ap-morph: (u f) psc-adjoin-set: (v;u) psc-restriction: f(s) pi2: snd(t) psc-adjoin: X.A pi1: fst(t)
Lemmas referenced :  presheaf-term_wf psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 presheaf-type_wf ps_context_wf small-category_wf presheaf_type_at_pair_lemma psc-adjoin-set_wf psc-restriction_wf presheaf-type-at_wf cat-arrow_wf presheaf-type-ap-morph_wf cat-comp_wf subtype_rel-equal psc-restriction-comp psc-adjoin-set-restriction equal_wf squash_wf true_wf istype-universe I_set_wf subtype_rel_self iff_weakening_equal cat-ob_wf presheaf_type_ap_morph_pair_lemma presheaf-pi_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType thin instantiate extract_by_obid isectElimination hypothesisEquality applyEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType because_Cache dependent_functionElimination Error :memTop,  lambdaEquality_alt setElimination rename lambdaFormation_alt functionIsType equalityIstype independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination hyp_replacement functionExtensionality_alt independent_pairFormation productIsType applyLambdaEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].
    ((\mlambda{}b)  \mmember{}  \{X  \mvdash{}  \_:\mPi{}A  B\})



Date html generated: 2020_05_20-PM-01_30_14
Last ObjectModification: 2020_04_02-PM-03_06_47

Theory : presheaf!models!of!type!theory


Home Index