Step
*
1
of Lemma
app-univ-a-1
1. G : CubicalSet{j}
2. A : {G ⊢ _:c𝕌}
3. B : {G ⊢ _:c𝕌}
4. f : {G ⊢ _:Equiv(decode(A);decode(B))}
5. G ⊢ Equiv(decode(A);decode(B))
6. (A)p ∈ {G.Equiv(decode(A);decode(B)) ⊢ _:c𝕌}
7. (B)p ∈ {G.Equiv(decode(A);decode(B)) ⊢ _:c𝕌}
8. ∀[X:ij⊢]. ∀[A,B:{X ⊢' _}]. ∀[b:{X.A ⊢ _:(B)p}]. (cubical-lam(X;b) ∈ {X ⊢ _:(A ⟶ B)})
⊢ app(cubical-lam(G;EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q)); f)
= (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f]
∈ {G ⊢ _:(Path_c𝕌 A B)}
BY
{ ((InstLemmaIJ `equiv-path_wf` [⌜G.Equiv(decode(A);decode(B))⌝;⌜(A)p⌝;⌜(B)p⌝;⌜q⌝]⋅
THENA (Auto THEN RWO "csm-universe-decode<" 0 THEN Auto)
)
THEN All (Unfold `cubical-lam`)
THEN (InstLemma `cubical-beta` [⌜parm{j}⌝;⌜parm{i'}⌝;⌜G⌝;⌜Equiv(decode(A);decode(B))⌝]⋅ THENA Auto)) }
1
1. G : CubicalSet{j}
2. A : {G ⊢ _:c𝕌}
3. B : {G ⊢ _:c𝕌}
4. f : {G ⊢ _:Equiv(decode(A);decode(B))}
5. G ⊢ Equiv(decode(A);decode(B))
6. (A)p ∈ {G.Equiv(decode(A);decode(B)) ⊢ _:c𝕌}
7. (B)p ∈ {G.Equiv(decode(A);decode(B)) ⊢ _:c𝕌}
8. ∀[X:ij⊢]. ∀[A,B:{X ⊢' _}]. ∀[b:{X.A ⊢ _:(B)p}]. ((λb) ∈ {X ⊢ _:(A ⟶ B)})
9. EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q) ∈ {G.Equiv(decode(A);decode(B)) ⊢ _:(Path_c𝕌 (A)p (B)p)}
10. ∀[B@0:{G.Equiv(decode(A);decode(B)) ⊢' _}]. ∀[b:{G.Equiv(decode(A);decode(B)) ⊢ _:B@0}].
∀[u:{G ⊢ _:Equiv(decode(A);decode(B))}].
(app((λb); u) = (b)[u] ∈ {G ⊢ _:(B@0)[u]})
⊢ app((λEquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q)); f)
= (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f]
∈ {G ⊢ _:(Path_c𝕌 A B)}
Latex:
Latex:
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_:c\mBbbU{}\}
3. B : \{G \mvdash{} \_:c\mBbbU{}\}
4. f : \{G \mvdash{} \_:Equiv(decode(A);decode(B))\}
5. G \mvdash{} Equiv(decode(A);decode(B))
6. (A)p \mmember{} \{G.Equiv(decode(A);decode(B)) \mvdash{} \_:c\mBbbU{}\}
7. (B)p \mmember{} \{G.Equiv(decode(A);decode(B)) \mvdash{} \_:c\mBbbU{}\}
8. \mforall{}[X:ij\mvdash{}]. \mforall{}[A,B:\{X \mvdash{}' \_\}]. \mforall{}[b:\{X.A \mvdash{} \_:(B)p\}]. (cubical-lam(X;b) \mmember{} \{X \mvdash{} \_:(A {}\mrightarrow{} B)\})
\mvdash{} app(cubical-lam(G;EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q)); f)
= (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f]
By
Latex:
((InstLemmaIJ `equiv-path\_wf` [\mkleeneopen{}G.Equiv(decode(A);decode(B))\mkleeneclose{};\mkleeneopen{}(A)p\mkleeneclose{};\mkleeneopen{}(B)p\mkleeneclose{};\mkleeneopen{}q\mkleeneclose{}]\mcdot{}
THENA (Auto THEN RWO "csm-universe-decode<" 0 THEN Auto)
)
THEN All (Unfold `cubical-lam`)
THEN (InstLemma `cubical-beta` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}Equiv(decode(A);decode(B))\mkleeneclose{}]\mcdot{}
THENA Auto
))
Home
Index