Nuprl Lemma : cc-fst-csm-adjoin
∀[Gamma,Delta:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[sigma:Delta j⟶ Gamma]. ∀[u:{Delta ⊢ _:(A)sigma}].
  (p o (sigma;u) = sigma ∈ Delta j⟶ Gamma)
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u)
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube_set_map: A ⟶ B
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
cc-fst: p
, 
psc-fst: p
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
Lemmas referenced : 
psc-fst-pscm-adjoin, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[u:\{Delta  \mvdash{}  \_:(A)sigma\}].
    (p  o  (sigma;u)  =  sigma)
Date html generated:
2020_05_20-PM-01_56_59
Last ObjectModification:
2020_04_03-PM-08_31_07
Theory : cubical!type!theory
Home
Index