Step
*
1
of Lemma
compU-wf-lemma1
.....subterm..... T:t
1:n
1. G : CubicalSet{j}
2. phi : {G ⊢ _:𝔽}
3. {G, phi.𝕀 ⊢ _:c𝕌} ∈ 𝕌{[i'' | j'']}
4. E : {G, phi.𝕀 ⊢ _:c𝕌}
5. (E)[0(𝕀)] ∈ {G, phi ⊢ _:c𝕌}
6. {G ⊢ _:c𝕌[phi |⟶ (E)[0(𝕀)]]} ∈ 𝕌{[i' | j']}
7. A : {G ⊢ _:c𝕌[phi |⟶ (E)[0(𝕀)]]}
⊢ encode(Glue [phi ⊢→ (decode((E)[1(𝕀)]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))] decode(A);
cfun-to-cop(G;Glue [phi ⊢→ (decode((E)[1(𝕀)]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))] decode(A)
;comp(Glue [phi ⊢→ (decode((E)[1(𝕀)]), equivU(G, phi;(decode(E))-;(compOp(E))-))] decode(A)) ))
∈ {G ⊢ _:c𝕌[phi |⟶ (E)[1(𝕀)]]}
BY
{ ((InstLemma `rev-type-line_wf` [⌜G, phi⌝;⌜decode(E)⌝]⋅ THENA Auto)
THEN (InstLemma `equivU_wf` [⌜G, phi⌝;⌜(decode(E))-⌝;⌜(compOp(E))-⌝]⋅ THENA Auto)
THEN (RWO "rev-type-line-0 rev-type-line-1" (-1) THENA Auto)
THEN ((Assert (E)[1(𝕀)] ∈ {G, phi ⊢ _:c𝕌} BY
((InstLemma `csm-ap-term_wf` [⌜parm{j}⌝;⌜parm{i'}⌝;⌜G, phi⌝;⌜G, phi.𝕀⌝;⌜c𝕌⌝;⌜[1(𝕀)]⌝;⌜E⌝]⋅ THENA Auto)
THEN RWO "csm-cubical-universe" (-1)
THEN Auto))
THEN (Assert G, phi ⊢ decode((E)[1(𝕀)]) BY
Auto)
)
THEN DVar `A'
THEN (ApFunToHypEquands `Z' ⌜decode(Z)⌝ ⌜{G, phi ⊢ _}⌝ (-5)⋅ THENA (Fold `member` 0 THEN MemCD THEN Auto))) }
1
1. G : CubicalSet{j}
2. phi : {G ⊢ _:𝔽}
3. {G, phi.𝕀 ⊢ _:c𝕌} ∈ 𝕌{[i'' | j'']}
4. E : {G, phi.𝕀 ⊢ _:c𝕌}
5. (E)[0(𝕀)] ∈ {G, phi ⊢ _:c𝕌}
6. {G ⊢ _:c𝕌[phi |⟶ (E)[0(𝕀)]]} ∈ 𝕌{[i' | j']}
7. A : {G ⊢ _:c𝕌}
8. (E)[0(𝕀)] = A ∈ {G, phi ⊢ _:c𝕌}
9. G, phi.𝕀 ⊢ (decode(E))-
10. equivU(G, phi;(decode(E))-;(compOp(E))-) ∈ {G, phi ⊢ _:Equiv((decode(E))[1(𝕀)];(decode(E))[0(𝕀)])}
11. (E)[1(𝕀)] ∈ {G, phi ⊢ _:c𝕌}
12. G, phi ⊢ decode((E)[1(𝕀)])
13. decode((E)[0(𝕀)]) = decode(A) ∈ {G, phi ⊢ _}
⊢ encode(Glue [phi ⊢→ (decode((E)[1(𝕀)]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))] decode(A);
cfun-to-cop(G;Glue [phi ⊢→ (decode((E)[1(𝕀)]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))] decode(A)
;comp(Glue [phi ⊢→ (decode((E)[1(𝕀)]), equivU(G, phi;(decode(E))-;(compOp(E))-))] decode(A)) ))
∈ {G ⊢ _:c𝕌[phi |⟶ (E)[1(𝕀)]]}
Latex:
Latex:
.....subterm..... T:t
1:n
1. G : CubicalSet\{j\}
2. phi : \{G \mvdash{} \_:\mBbbF{}\}
3. \{G, phi.\mBbbI{} \mvdash{} \_:c\mBbbU{}\} \mmember{} \mBbbU{}\{[i'' | j'']\}
4. E : \{G, phi.\mBbbI{} \mvdash{} \_:c\mBbbU{}\}
5. (E)[0(\mBbbI{})] \mmember{} \{G, phi \mvdash{} \_:c\mBbbU{}\}
6. \{G \mvdash{} \_:c\mBbbU{}[phi |{}\mrightarrow{} (E)[0(\mBbbI{})]]\} \mmember{} \mBbbU{}\{[i' | j']\}
7. A : \{G \mvdash{} \_:c\mBbbU{}[phi |{}\mrightarrow{} (E)[0(\mBbbI{})]]\}
\mvdash{} encode(Glue [phi \mvdash{}\mrightarrow{} (decode((E)[1(\mBbbI{})]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))]
decode(A);cfun-to-cop(G;Glue [phi \mvdash{}\mrightarrow{} (decode((E)[1(\mBbbI{})]);
equiv-fun(equivU(G, phi;(decode(E))-;
(compOp(E))-)))] decode(A)
;comp(Glue [phi \mvdash{}\mrightarrow{} (decode((E)[1(\mBbbI{})]), equivU(G, phi;(decode(E))-;
(compOp(E))-))]
decode(A)) )) \mmember{} \{G \mvdash{} \_:c\mBbbU{}[phi |{}\mrightarrow{} (E)[1(\mBbbI{})]]\}
By
Latex:
((InstLemma `rev-type-line\_wf` [\mkleeneopen{}G, phi\mkleeneclose{};\mkleeneopen{}decode(E)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `equivU\_wf` [\mkleeneopen{}G, phi\mkleeneclose{};\mkleeneopen{}(decode(E))-\mkleeneclose{};\mkleeneopen{}(compOp(E))-\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "rev-type-line-0 rev-type-line-1" (-1) THENA Auto)
THEN ((Assert (E)[1(\mBbbI{})] \mmember{} \{G, phi \mvdash{} \_:c\mBbbU{}\} BY
((InstLemma `csm-ap-term\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G, phi\mkleeneclose{};\mkleeneopen{}G, phi.\mBbbI{}\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{};\mkleeneopen{}[1(\mBbbI{})]\mkleeneclose{};
\mkleeneopen{}E\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN RWO "csm-cubical-universe" (-1)
THEN Auto))
THEN (Assert G, phi \mvdash{} decode((E)[1(\mBbbI{})]) BY
Auto)
)
THEN DVar `A'
THEN (ApFunToHypEquands `Z' \mkleeneopen{}decode(Z)\mkleeneclose{} \mkleeneopen{}\{G, phi \mvdash{} \_\}\mkleeneclose{} (-5)\mcdot{}
THENA (Fold `member` 0 THEN MemCD THEN Auto)
))
Home
Index