Nuprl Lemma : compU-wf-lemma1

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].
  E,A. encode(Glue [phi ⊢→ (decode((E)[1(𝕀)]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))] decode(A);
                cfun-to-cop(G;Glue [phi ⊢→ (decode((E)[1(𝕀)]);equiv-fun(equivU(G, phi;(decode(E))-;(compOp(E))-)))]
                                   decode(A)
                    ;comp(Glue [phi ⊢→ (decode((E)[1(𝕀)]), equivU(G, phi;(decode(E))-;(compOp(E))-))] decode(A)) ))
   ∈ u:{G, phi.𝕀 ⊢ _:c𝕌} ⟶ a0:{G ⊢ _:c𝕌[phi |⟶ (u)[0(𝕀)]]} ⟶ {G ⊢ _:c𝕌[phi |⟶ (u)[1(𝕀)]]})


Proof




Definitions occuring in Statement :  equivU: equivU(G;E;cE) universe-comp-op: compOp(t) universe-decode: decode(t) universe-encode: encode(T;cT) cubical-universe: c𝕌 glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  glue-type: Glue [phi ⊢→ (T;w)] A comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-op-to-comp-fun: cop-to-cfun(cA) rev-type-line-comp: (cA)- rev-type-line: (A)- csm-composition: (comp)sigma equiv-fun: equiv-fun(f) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T prop: true: True uimplies: supposing a same-cubical-type: Gamma ⊢ B all: x:A. B[x] implies:  Q comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) csm-comp: F context-map: <rho> context-subset: Gamma, phi functor-arrow: arrow(F) pi2: snd(t) cube-set-restriction: f(s) canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-type: {X ⊢ _} universe-encode: encode(T;cT) guard: {T} and: P ∧ Q
Lemmas referenced :  cubical-term_wf cube-context-adjoin_wf context-subset_wf interval-type_wf cubical-universe_wf subtype_rel_universe1 csm-ap-term_wf csm-id-adjoin_wf interval-0_wf csm-cubical-universe constrained-cubical-term_wf istype-cubical-term face-type_wf cubical_set_wf rev-type-line_wf universe-decode_wf equivU_wf rev-type-line-comp_wf universe-comp-op_wf interval-1_wf rev-type-line-0 rev-type-line-1 csm-universe-decode cubical-equiv_wf squash_wf true_wf cubical-type_wf cubical-term-eqcd equiv-fun_wf thin-context-subset glue-type_wf glue-type-constraint comp-op-to-comp-fun_wf2 cubical_set_cumulativity-i-j csm-composition_wf glue-comp_wf2 subset-cubical-term context-subset-is-subset universe-encode_wf comp-fun-to-comp-op_wf universe-encode-decode comp-op-to-comp-fun-inverse composition-op_wf cubical-type-cumulativity2 equal_wf istype-universe cubical_type_ap_morph_pair_lemma composition-structure_wf subset-cubical-type sub_cubical_set_self glue-comp-agrees csm-universe-comp-op I_cube_wf fset_wf nat_wf cubical-term-equal cubical-universe-at csm-ap-type_wf cube_set_map_wf formal-cube_wf1 context-map-subset subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule lambdaEquality_alt inhabitedIsType because_Cache Error :memTop,  equalityTransitivity equalitySymmetry universeIsType setElimination rename applyLambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination cumulativity universeEquality hyp_replacement dependent_functionElimination dependent_set_memberEquality_alt equalityIstype lambdaFormation_alt independent_functionElimination productElimination functionExtensionality dependent_pairEquality_alt independent_pairFormation productIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    (\mlambda{}E,A.  encode(Glue  [phi  \mvdash{}\mrightarrow{}  (decode((E)[1(\mBbbI{})]);equiv-fun(equivU(G,  phi;(decode(E))-;
                                                                                                                                  (compOp(E))-)))]  decode(A);
                                cfun-to-cop(G;Glue  [phi  \mvdash{}\mrightarrow{}  (decode((E)[1(\mBbbI{})]);equiv-fun(equivU(G,  phi;(decode(E))-;
                                                                                                                                                              (compOp(E))-)))]
                                                                      decode(A)
                                        ;comp(Glue  [phi  \mvdash{}\mrightarrow{}  (decode((E)[1(\mBbbI{})]),  equivU(G,  phi;(decode(E))-;
                                                                                                                                    (compOp(E))-))]  decode(A))  ))
      \mmember{}  u:\{G,  phi.\mBbbI{}  \mvdash{}  \_:c\mBbbU{}\}  {}\mrightarrow{}  a0:\{G  \mvdash{}  \_:c\mBbbU{}[phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}  {}\mrightarrow{}  \{G  \mvdash{}  \_:c\mBbbU{}[phi  |{}\mrightarrow{}  (u)[1(\mBbbI{})]]\})



Date html generated: 2020_05_20-PM-07_22_22
Last ObjectModification: 2020_04_27-PM-05_53_24

Theory : cubical!type!theory


Home Index