Nuprl Lemma : universe-encode-decode

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}].  (encode(decode(t);compOp(t)) t ∈ {X ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  universe-comp-op: compOp(t) universe-decode: decode(t) universe-encode: encode(T;cT) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-term-at: u(a) member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B universe-encode: encode(T;cT) pi1: fst(t) universe-type: universe-type(t;I;a) pi2: snd(t) implies:  Q subtype_rel: A ⊆B squash: T prop: true: True nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False so_lambda: λ2x.t[x] so_apply: x[s] universe-comp-op: compOp(t) csm-composition: (comp)sigma context-map: <rho> csm-ap: (s)x functor-arrow: arrow(F) cube-set-restriction: f(s) formal-cube: formal-cube(I) guard: {T} cubical-universe: c𝕌 closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) closed-type-to-type: closed-type-to-type(T) composition-op: Gamma ⊢ CompOp(A) csm-ap-type: (AF)s subset-iota: iota csm-comp: F compose: g iff: ⇐⇒ Q rev_implies:  Q cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) name-morph-satisfies: (psi f) 1 bdd-distributive-lattice: BoundedDistributiveLattice face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-term-equal cubical-universe_wf istype-cubical-universe-term cubical_set_wf cubical-term-at_wf universe-decode_wf universe-comp-op_wf universe-encode_wf cubical-universe-at-equal csm-universe-decode universe-decode-type cubical-universe-at composition-op_wf squash_wf true_wf cubical-type_wf formal-cube_wf1 cubical-type-cumulativity2 csm-composition_wf context-map_wf equal-composition-op2 istype-cubical-term cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf universe-type_wf csm-comp_wf subset-iota_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void I_cube_pair_redex_lemma cubical-term-at-morph pi1_wf_top equal_functionality_wrt_subtype_rel2 cubical_type_ap_morph_pair_lemma nh-id_wf cubical-term-eqcd context-map-1 equal_wf cubical-type-subtype-cubical-subset cube-set-restriction-id iff_weakening_equal istype-universe csm-universe-type subtype_rel_self cubical-type-at_wf nc-0_wf csm-ap-type-at cube_set_restriction_pair_lemma nh-id-right cubical-subset-I_cube names-hom_wf nh-comp_wf nh-comp-assoc cubical-type-ap-morph_wf csm-cubical-type-ap-morph cubical-subset-I_cube-member csm-ap-context-map cube-set-restriction-comp name-morph-satisfies_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph-restriction s-comp-nc-0 nc-1_wf arrow_pair_lemma nh-id-left cube_set_map_wf cubical-path-0_wf subset-cubical-term2 sub_cubical_set_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut equalitySymmetry functionExtensionality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate because_Cache equalityTransitivity independent_isectElimination dependent_functionElimination universeIsType independent_pairFormation sqequalRule Error :memTop,  inhabitedIsType lambdaFormation_alt productElimination equalityIstype independent_functionElimination applyEquality lambdaEquality_alt hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed setElimination rename dependent_set_memberEquality_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination setIsType functionIsType intEquality productIsType applyLambdaEquality independent_pairEquality universeEquality setEquality cumulativity functionEquality productEquality isectEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    (encode(decode(t);compOp(t))  =  t)



Date html generated: 2020_05_20-PM-07_16_58
Last ObjectModification: 2020_04_26-PM-00_38_36

Theory : cubical!type!theory


Home Index