Nuprl Lemma : cubical-universe-at-equal

[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[x,y:c𝕌(a)].
  y ∈ c𝕌(a) 
  supposing ((fst(x)) (fst(y)) ∈ {formal-cube(I) ⊢ _}) ∧ ((snd(x)) (snd(y)) ∈ formal-cube(I) ⊢ CompOp(fst(x)))


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 composition-op: Gamma ⊢ CompOp(A) cubical-type-at: A(a) cubical-type: {X ⊢ _} formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a pi1: fst(t) pi2: snd(t) and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  cubical-universe-at composition-op_wf formal-cube_wf1 cubical-type-cumulativity2 subtype_rel-equal cubical-type_wf I_cube_wf fset_wf nat_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis because_Cache productElimination dependent_pairEquality_alt universeIsType instantiate hypothesisEquality applyEquality productIsType equalityIstype inhabitedIsType independent_isectElimination dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[x,y:c\mBbbU{}(a)].
    x  =  y  supposing  ((fst(x))  =  (fst(y)))  \mwedge{}  ((snd(x))  =  (snd(y)))



Date html generated: 2020_05_20-PM-07_07_59
Last ObjectModification: 2020_04_25-PM-03_20_12

Theory : cubical!type!theory


Home Index