Nuprl Lemma : cubical-universe-at-equal
∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[x,y:c𝕌(a)].
  x = y ∈ c𝕌(a) 
  supposing ((fst(x)) = (fst(y)) ∈ {formal-cube(I) ⊢ _}) ∧ ((snd(x)) = (snd(y)) ∈ formal-cube(I) ⊢ CompOp(fst(x)))
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
formal-cube: formal-cube(I)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-universe-at, 
composition-op_wf, 
formal-cube_wf1, 
cubical-type-cumulativity2, 
subtype_rel-equal, 
cubical-type_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
because_Cache, 
productElimination, 
dependent_pairEquality_alt, 
universeIsType, 
instantiate, 
hypothesisEquality, 
applyEquality, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[x,y:c\mBbbU{}(a)].
    x  =  y  supposing  ((fst(x))  =  (fst(y)))  \mwedge{}  ((snd(x))  =  (snd(y)))
Date html generated:
2020_05_20-PM-07_07_59
Last ObjectModification:
2020_04_25-PM-03_20_12
Theory : cubical!type!theory
Home
Index