Nuprl Lemma : context-map-subset

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[a:G, phi(I)].  (<a> = <a> ∈ formal-cube(I) j⟶ G, phi)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] context-subset: Gamma, phi context-map: <rho> all: x:A. B[x] member: t ∈ T functor-arrow: arrow(F) cube-set-restriction: f(s) csm-ap: (s)x subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  arrow_pair_lemma csm-ap_wf formal-cube_wf1 context-subset_wf cubical_set_cumulativity-i-j context-map_wf I_cube_wf csm-equal fset_wf nat_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionExtensionality sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis instantiate isectElimination hypothesisEquality applyEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:G,  phi(I)].    (<a>  =  <a>)



Date html generated: 2020_05_20-PM-02_45_18
Last ObjectModification: 2020_04_05-PM-01_44_40

Theory : cubical!type!theory


Home Index