Step
*
1
of Lemma
composition-structure-equal
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. c1 : Gamma ⊢ Compositon(A)
4. c2 : Gamma ⊢ Compositon(A)
5. ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
((c1 H sigma phi u a0) = (c2 H sigma phi u a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})
⊢ c1 = c2 ∈ Gamma ⊢ Compositon(A)
BY
{ (D 3
THEN EqTypeCD
THEN Auto
THEN Unfold `composition-function` 0
THEN RepeatFor 5 ((FunExt THENA Auto))
THEN Unfold `constrained-cubical-term` 0
THEN EqTypeCD) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. c1 : composition-function{j:l,i:l}(Gamma;A)
4. uniform-comp-function{j:l, i:l}(Gamma; A; c1)
5. c2 : Gamma ⊢ Compositon(A)
6. ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
((c1 H sigma phi u a0) = (c2 H sigma phi u a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})
7. H : CubicalSet{j}
8. sigma : H.𝕀 j⟶ Gamma
9. phi : {H ⊢ _:𝔽}
10. u : {H, phi.𝕀 ⊢ _:(A)sigma}
11. a0 : {H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}
⊢ (c1 H sigma phi u a0) = (c2 H sigma phi u a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]}
2
.....set predicate.....
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. c1 : composition-function{j:l,i:l}(Gamma;A)
4. uniform-comp-function{j:l, i:l}(Gamma; A; c1)
5. c2 : Gamma ⊢ Compositon(A)
6. ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
((c1 H sigma phi u a0) = (c2 H sigma phi u a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})
7. H : CubicalSet{j}
8. sigma : H.𝕀 j⟶ Gamma
9. phi : {H ⊢ _:𝔽}
10. u : {H, phi.𝕀 ⊢ _:(A)sigma}
11. a0 : {H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}
⊢ (u)[1(𝕀)] = (c1 H sigma phi u a0) ∈ {H, phi ⊢ _:((A)sigma)[1(𝕀)]}
3
.....wf.....
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. c1 : composition-function{j:l,i:l}(Gamma;A)
4. uniform-comp-function{j:l, i:l}(Gamma; A; c1)
5. c2 : Gamma ⊢ Compositon(A)
6. ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
((c1 H sigma phi u a0) = (c2 H sigma phi u a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})
7. H : CubicalSet{j}
8. sigma : H.𝕀 j⟶ Gamma
9. phi : {H ⊢ _:𝔽}
10. u : {H, phi.𝕀 ⊢ _:(A)sigma}
11. a0 : {H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}
12. a : {H ⊢ _:((A)sigma)[1(𝕀)]}
⊢ istype((u)[1(𝕀)] = a ∈ {H, phi ⊢ _:((A)sigma)[1(𝕀)]})
Latex:
Latex:
1. Gamma : CubicalSet\{j\}
2. A : \{Gamma \mvdash{} \_\}
3. c1 : Gamma \mvdash{} Compositon(A)
4. c2 : Gamma \mvdash{} Compositon(A)
5. \mforall{}H:j\mvdash{}. \mforall{}sigma:H.\mBbbI{} j{}\mrightarrow{} Gamma. \mforall{}phi:\{H \mvdash{} \_:\mBbbF{}\}. \mforall{}u:\{H, phi.\mBbbI{} \mvdash{} \_:(A)sigma\}.
\mforall{}a0:\{H \mvdash{} \_:((A)sigma)[0(\mBbbI{})][phi |{}\mrightarrow{} (u)[0(\mBbbI{})]]\}.
((c1 H sigma phi u a0) = (c2 H sigma phi u a0))
\mvdash{} c1 = c2
By
Latex:
(D 3
THEN EqTypeCD
THEN Auto
THEN Unfold `composition-function` 0
THEN RepeatFor 5 ((FunExt THENA Auto))
THEN Unfold `constrained-cubical-term` 0
THEN EqTypeCD)
Home
Index