Nuprl Lemma : composition-structure-equal
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[c1,c2:Gamma ⊢ Compositon(A)].
  c1 = c2 ∈ Gamma ⊢ Compositon(A) 
  supposing ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
            ∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
              ((c1 H sigma phi u a0) = (c2 H sigma phi u a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
interval-1: 1(𝕀)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
Lemmas referenced : 
cube_set_map_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
istype-cubical-term, 
face-type_wf, 
context-subset_wf, 
cubical_set_cumulativity-i-j, 
thin-context-subset-adjoin, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
csm-context-subset-subtype3, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf-interval-0, 
csm-ap-term_wf, 
csm-id-adjoin_wf-interval-1, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-term_wf, 
uniform-comp-function_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-context-subset-subtype2, 
subset-cubical-term2, 
sub_cubical_set_self, 
subset-cubical-term, 
context-subset-is-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
functionIsType, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
applyEquality, 
because_Cache, 
equalityIstype, 
setElimination, 
rename, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
dependent_functionElimination, 
lambdaFormation_alt, 
independent_functionElimination, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[c1,c2:Gamma  \mvdash{}  Compositon(A)].
    c1  =  c2 
    supposing  \mforall{}H:j\mvdash{}.  \mforall{}sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma.  \mforall{}phi:\{H  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}.
                        \mforall{}a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}.
                            ((c1  H  sigma  phi  u  a0)  =  (c2  H  sigma  phi  u  a0))
Date html generated:
2020_05_20-PM-04_22_45
Last ObjectModification:
2020_04_17-PM-04_41_42
Theory : cubical!type!theory
Home
Index