Nuprl Lemma : composition-structure-equal

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[c1,c2:Gamma ⊢ Compositon(A)].
  c1 c2 ∈ Gamma ⊢ Compositon(A) 
  supposing ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
            ∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
              ((c1 sigma phi a0) (c2 sigma phi a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} prop: implies:  Q cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-1: 1(𝕀) csm-adjoin: (s;u) csm-ap: (s)x
Lemmas referenced :  cube_set_map_wf cube-context-adjoin_wf interval-type_wf istype-cubical-term face-type_wf context-subset_wf cubical_set_cumulativity-i-j thin-context-subset-adjoin csm-ap-type_wf cubical-type-cumulativity2 csm-context-subset-subtype3 constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 csm-ap-term_wf csm-id-adjoin_wf-interval-1 composition-structure_wf cubical-type_wf cubical_set_wf cubical-term_wf uniform-comp-function_wf csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 subset-cubical-term2 sub_cubical_set_self subset-cubical-term context-subset-is-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule functionIsType inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin instantiate applyEquality because_Cache equalityIstype setElimination rename lambdaEquality_alt equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt functionExtensionality dependent_functionElimination lambdaFormation_alt independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[c1,c2:Gamma  \mvdash{}  Compositon(A)].
    c1  =  c2 
    supposing  \mforall{}H:j\mvdash{}.  \mforall{}sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma.  \mforall{}phi:\{H  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}.
                        \mforall{}a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}.
                            ((c1  H  sigma  phi  u  a0)  =  (c2  H  sigma  phi  u  a0))



Date html generated: 2020_05_20-PM-04_22_45
Last ObjectModification: 2020_04_17-PM-04_41_42

Theory : cubical!type!theory


Home Index