Nuprl Lemma : composition-structure-implies-composition-op

Gamma:j⊢. ∀A:{Gamma ⊢ _}.  (Gamma ⊢ Compositon(A)  Gamma ⊢ CompOp(A))


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  comp-fun-to-comp-op_wf composition-structure_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis universeIsType instantiate

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.    (Gamma  \mvdash{}  Compositon(A)  {}\mRightarrow{}  Gamma  \mvdash{}  CompOp(A))



Date html generated: 2020_05_20-PM-04_32_29
Last ObjectModification: 2020_04_11-PM-05_15_32

Theory : cubical!type!theory


Home Index