Nuprl Lemma : context-subset-1

[Gamma:j⊢]. {Gamma, 1(𝔽) ⊢ _} ≡ {Gamma ⊢ _}


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-1: 1(𝔽) cubical-type: {X ⊢ _} cubical_set: CubicalSet ext-eq: A ≡ B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] ext-eq: A ≡ B and: P ∧ Q member: t ∈ T uimplies: supposing a
Lemmas referenced :  subset-cubical-type context-subset_wf face-1_wf context-1-subset subset-context-1 cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination instantiate because_Cache universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \{Gamma,  1(\mBbbF{})  \mvdash{}  \_\}  \mequiv{}  \{Gamma  \mvdash{}  \_\}



Date html generated: 2020_05_20-PM-02_54_18
Last ObjectModification: 2020_04_04-PM-05_08_42

Theory : cubical!type!theory


Home Index