Nuprl Lemma : context-subset-1
∀[Gamma:j⊢]. {Gamma, 1(𝔽) ⊢ _} ≡ {Gamma ⊢ _}
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-1: 1(𝔽)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
subset-cubical-type, 
context-subset_wf, 
face-1_wf, 
context-1-subset, 
subset-context-1, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
instantiate, 
because_Cache, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \{Gamma,  1(\mBbbF{})  \mvdash{}  \_\}  \mequiv{}  \{Gamma  \mvdash{}  \_\}
Date html generated:
2020_05_20-PM-02_54_18
Last ObjectModification:
2020_04_04-PM-05_08_42
Theory : cubical!type!theory
Home
Index