Nuprl Lemma : csm+-comp-csm+-interval

[H,K,X:j⊢]. ∀[tau:K j⟶ H]. ∀[s:X j⟶ K].  (tau+ s+ tau s+ ∈ X.𝕀 j⟶ H.𝕀)


Proof




Definitions occuring in Statement :  interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-comp: F csm+: tau+
Lemmas referenced :  csm+-comp-csm+-sq-interval csm+_wf_interval csm-comp_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality universeIsType because_Cache inhabitedIsType instantiate

Latex:
\mforall{}[H,K,X:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[s:X  j{}\mrightarrow{}  K].    (tau+  o  s+  =  tau  o  s+)



Date html generated: 2020_05_20-PM-02_38_18
Last ObjectModification: 2020_04_21-PM-00_01_22

Theory : cubical!type!theory


Home Index