Nuprl Lemma : csm+-comp-csm+-interval
∀[H,K,X:j⊢]. ∀[tau:K j⟶ H]. ∀[s:X j⟶ K].  (tau+ o s+ = tau o s+ ∈ X.𝕀 j⟶ H.𝕀)
Proof
Definitions occuring in Statement : 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-comp: G o F
, 
csm+: tau+
Lemmas referenced : 
csm+-comp-csm+-sq-interval, 
csm+_wf_interval, 
csm-comp_wf, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}[H,K,X:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[s:X  j{}\mrightarrow{}  K].    (tau+  o  s+  =  tau  o  s+)
Date html generated:
2020_05_20-PM-02_38_18
Last ObjectModification:
2020_04_21-PM-00_01_22
Theory : cubical!type!theory
Home
Index