Nuprl Lemma : csm+-comp-csm+-sq
∀[H,K,X,A,tau,s:Top]. (tau+ o s+ ~ tau o s+)
Proof
Definitions occuring in Statement :
csm+: tau+
,
cube-context-adjoin: X.A
,
csm-ap-type: (AF)s
,
csm-comp: G o F
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
csm-comp: G o F
,
csm+: tau+
,
csm-ap-type: (AF)s
,
cc-snd: q
,
compose: f o g
,
cc-fst: p
,
csm-adjoin: (s;u)
,
csm-ap: (s)x
,
pi2: snd(t)
,
pi1: fst(t)
Lemmas referenced :
istype-top
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
hypothesis,
axiomSqEquality,
inhabitedIsType,
hypothesisEquality,
sqequalHypSubstitution,
isect_memberEquality_alt,
isectElimination,
thin,
isectIsTypeImplies,
extract_by_obid
Latex:
\mforall{}[H,K,X,A,tau,s:Top]. (tau+ o s+ \msim{} tau o s+)
Date html generated:
2020_05_20-PM-01_58_12
Last ObjectModification:
2020_04_21-PM-00_07_15
Theory : cubical!type!theory
Home
Index