Nuprl Lemma : csm-adjoin-fst-snd

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  ((p;q) 1(Gamma.A) ∈ Gamma.A ij⟶ Gamma.A)


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A cubical-type: {X ⊢ _} csm-id: 1(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p cc-snd: q psc-snd: q csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  pscm-adjoin-fst-snd cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((p;q)  =  1(Gamma.A))



Date html generated: 2020_05_20-PM-01_57_18
Last ObjectModification: 2020_04_04-AM-09_40_36

Theory : cubical!type!theory


Home Index