Nuprl Lemma : pscm-adjoin-fst-snd
∀[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].
  ((p;q) = 1(Gamma.A) ∈ psc_map{[i | j]:l}(C; Gamma.A; Gamma.A))
Proof
Definitions occuring in Statement : 
pscm-adjoin: (s;u)
, 
psc-snd: q
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
presheaf-type: {X ⊢ _}
, 
pscm-id: 1(X)
, 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
presheaf-type: {X ⊢ _}
, 
psc-snd: q
, 
psc-fst: p
, 
pscm-adjoin: (s;u)
, 
psc-adjoin: X.A
, 
I_set: A(I)
, 
all: ∀x:A. B[x]
, 
pscm-ap: (s)x
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
pscm-id: 1(X)
, 
uimplies: b supposing a
Lemmas referenced : 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
psc-adjoin_wf, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
pscm-id_wf, 
ob_pair_lemma, 
presheaf_type_at_pair_lemma, 
I_set_wf, 
cat-ob_wf, 
pscm-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
Error :memTop, 
lambdaEquality_alt, 
dependent_pairEquality_alt, 
productIsType, 
functionExtensionality_alt, 
independent_isectElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((p;q)  =  1(Gamma.A))
Date html generated:
2020_05_20-PM-01_28_16
Last ObjectModification:
2020_04_02-PM-02_58_58
Theory : presheaf!models!of!type!theory
Home
Index