Nuprl Lemma : pscm-adjoin-fst-snd

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].
  ((p;q) 1(Gamma.A) ∈ psc_map{[i j]:l}(C; Gamma.A; Gamma.A))


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-snd: q psc-fst: p psc-adjoin: X.A presheaf-type: {X ⊢ _} pscm-id: 1(X) psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B presheaf-type: {X ⊢ _} psc-snd: q psc-fst: p pscm-adjoin: (s;u) psc-adjoin: X.A I_set: A(I) all: x:A. B[x] pscm-ap: (s)x functor-ob: ob(F) pi1: fst(t) pi2: snd(t) pscm-id: 1(X) uimplies: supposing a
Lemmas referenced :  presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-id_wf ob_pair_lemma presheaf_type_at_pair_lemma I_set_wf cat-ob_wf pscm-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache setElimination rename productElimination dependent_functionElimination Error :memTop,  lambdaEquality_alt dependent_pairEquality_alt productIsType functionExtensionality_alt independent_isectElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((p;q)  =  1(Gamma.A))



Date html generated: 2020_05_20-PM-01_28_16
Last ObjectModification: 2020_04_02-PM-02_58_58

Theory : presheaf!models!of!type!theory


Home Index