Nuprl Lemma : csm-ap-type-is-id

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[s:Gamma j⟶ Gamma].  (A)s A ∈ {Gamma ⊢ _} supposing 1(Gamma) ∈ Gamma j⟶ Gamma


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-id: 1(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x
Lemmas referenced :  pscm-ap-type-is-id cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[s:Gamma  j{}\mrightarrow{}  Gamma].    (A)s  =  A  supposing  s  =  1(Gamma)



Date html generated: 2020_05_20-PM-01_49_48
Last ObjectModification: 2020_04_03-PM-08_27_12

Theory : cubical!type!theory


Home Index