Nuprl Lemma : pscm-ap-type-is-id
∀[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[s:psc_map{j:l}(C; Gamma; Gamma)].
  (A)s = A ∈ {Gamma ⊢ _} supposing s = 1(Gamma) ∈ psc_map{j:l}(C; Gamma; Gamma)
Proof
Definitions occuring in Statement : 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
pscm-id: 1(X)
, 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
pscm-ap-id-type, 
equal_wf, 
presheaf-type_wf, 
pscm-ap-type_wf, 
pscm-id_wf, 
psc_map_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
instantiate, 
equalityIstype, 
inhabitedIsType, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
applyEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
\mforall{}[s:psc\_map\{j:l\}(C;  Gamma;  Gamma)].
    (A)s  =  A  supposing  s  =  1(Gamma)
Date html generated:
2020_05_20-PM-01_26_23
Last ObjectModification:
2020_04_01-AM-11_50_58
Theory : presheaf!models!of!type!theory
Home
Index