Nuprl Lemma : pscm-ap-type-is-id

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[s:psc_map{j:l}(C; Gamma; Gamma)].
  (A)s A ∈ {Gamma ⊢ _} supposing 1(Gamma) ∈ psc_map{j:l}(C; Gamma; Gamma)


Proof




Definitions occuring in Statement :  pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} pscm-id: 1(X) psc_map: A ⟶ B ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B
Lemmas referenced :  pscm-ap-id-type equal_wf presheaf-type_wf pscm-ap-type_wf pscm-id_wf psc_map_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hyp_replacement equalitySymmetry applyLambdaEquality instantiate equalityIstype inhabitedIsType sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType applyEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
\mforall{}[s:psc\_map\{j:l\}(C;  Gamma;  Gamma)].
    (A)s  =  A  supposing  s  =  1(Gamma)



Date html generated: 2020_05_20-PM-01_26_23
Last ObjectModification: 2020_04_01-AM-11_50_58

Theory : presheaf!models!of!type!theory


Home Index