Nuprl Lemma : csm-cubical-fun-family
∀X,Delta:j⊢. ∀A,B:{X ⊢ _}. ∀s:Delta j⟶ X. ∀I:fset(ℕ). ∀a:Delta(I).
(cubical-fun-family(X; A; B; I; (s)a) = cubical-fun-family(Delta; (A)s; (B)s; I; a) ∈ Type)
Proof
Definitions occuring in Statement :
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
,
csm-ap-type: (AF)s
,
cubical-type: {X ⊢ _}
,
csm-ap: (s)x
,
cube_set_map: A ⟶ B
,
I_cube: A(I)
,
cubical_set: CubicalSet
,
fset: fset(T)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
cube_set_map: A ⟶ B
,
cube-cat: CubeCat
,
I_cube: A(I)
,
I_set: A(I)
,
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
,
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
,
cubical-type-at: A(a)
,
presheaf-type-at: A(a)
,
cube-set-restriction: f(s)
,
psc-restriction: f(s)
,
csm-ap: (s)x
,
pscm-ap: (s)x
,
cubical-type-ap-morph: (u a f)
,
presheaf-type-ap-morph: (u a f)
,
csm-ap-type: (AF)s
,
pscm-ap-type: (AF)s
Lemmas referenced :
pscm-presheaf-fun-family,
cube-cat_wf,
cubical-type-sq-presheaf-type,
cat_ob_pair_lemma,
cat_arrow_triple_lemma,
cat_comp_tuple_lemma
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_functionElimination,
thin,
hypothesis,
sqequalRule,
isectElimination,
Error :memTop
Latex:
\mforall{}X,Delta:j\mvdash{}. \mforall{}A,B:\{X \mvdash{} \_\}. \mforall{}s:Delta j{}\mrightarrow{} X. \mforall{}I:fset(\mBbbN{}). \mforall{}a:Delta(I).
(cubical-fun-family(X; A; B; I; (s)a) = cubical-fun-family(Delta; (A)s; (B)s; I; a))
Date html generated:
2020_05_20-PM-01_59_56
Last ObjectModification:
2020_04_03-PM-08_33_07
Theory : cubical!type!theory
Home
Index