Nuprl Lemma : pscm-presheaf-fun-family

C:SmallCategory. ∀X,Delta:ps_context{j:l}(C). ∀A,B:{X ⊢ _}. ∀s:psc_map{j:l}(C; Delta; X). ∀I:cat-ob(C). ∀a:Delta(I).
  (presheaf-fun-family(C; X; A; B; I; (s)a) presheaf-fun-family(C; Delta; (A)s; (B)s; I; a) ∈ Type)


Proof




Definitions occuring in Statement :  presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} pscm-ap: (s)x psc_map: A ⟶ B I_set: A(I) ps_context: __⊢ all: x:A. B[x] universe: Type equal: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) squash: T true: True prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_set_wf cat-ob_wf psc_map_wf cat-arrow_wf pscm-ap-type-at presheaf-type-at_wf pscm-ap-restriction squash_wf true_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf equal_wf psc-restriction_wf pscm-ap_wf subtype_rel_self iff_weakening_equal presheaf-type-ap-morph_wf pscm-ap-type_wf subtype_rel-equal pscm-presheaf-type-ap-morph cat-comp_wf psc-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule setEquality functionEquality Error :memTop,  lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry universeEquality independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Delta:ps\_context\{j:l\}(C).  \mforall{}A,B:\{X  \mvdash{}  \_\}.  \mforall{}s:psc\_map\{j:l\}(C;  Delta;  X).
\mforall{}I:cat-ob(C).  \mforall{}a:Delta(I).
    (presheaf-fun-family(C;  X;  A;  B;  I;  (s)a)  =  presheaf-fun-family(C;  Delta;  (A)s;  (B)s;  I;  a))



Date html generated: 2020_05_20-PM-01_29_07
Last ObjectModification: 2020_04_02-PM-02_59_39

Theory : presheaf!models!of!type!theory


Home Index