Nuprl Lemma : csm-equiv-contr

[s,f,a:Top].  ((equiv-contr(f;a))s equiv-contr((f)s;(a)s))


Proof




Definitions occuring in Statement :  equiv-contr: equiv-contr(f;a) csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  csm-ap-term: (t)s equiv-contr: equiv-contr(f;a) cubical-snd: p.2 cubical-app: app(w; u) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[s,f,a:Top].    ((equiv-contr(f;a))s  \msim{}  equiv-contr((f)s;(a)s))



Date html generated: 2018_05_23-AM-09_43_36
Last ObjectModification: 2018_05_20-PM-06_42_50

Theory : cubical!type!theory


Home Index