Nuprl Lemma : csm-equiv-contr
∀[s,f,a:Top].  ((equiv-contr(f;a))s ~ equiv-contr((f)s;(a)s))
Proof
Definitions occuring in Statement : 
equiv-contr: equiv-contr(f;a)
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-ap-term: (t)s
, 
equiv-contr: equiv-contr(f;a)
, 
cubical-snd: p.2
, 
cubical-app: app(w; u)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[s,f,a:Top].    ((equiv-contr(f;a))s  \msim{}  equiv-contr((f)s;(a)s))
Date html generated:
2018_05_23-AM-09_43_36
Last ObjectModification:
2018_05_20-PM-06_42_50
Theory : cubical!type!theory
Home
Index