Nuprl Lemma : csm-path-eta
∀[pth,s:Top].  ((path-eta(pth))s ~ ((pth)p)s @ (q)s)
Proof
Definitions occuring in Statement : 
path-eta: path-eta(pth)
, 
cubicalpath-app: pth @ r
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
path-eta: path-eta(pth)
, 
top: Top
Lemmas referenced : 
csm-cubicalpath-app, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[pth,s:Top].    ((path-eta(pth))s  \msim{}  ((pth)p)s  @  (q)s)
Date html generated:
2017_01_10-AM-08_54_53
Last ObjectModification:
2016_12_16-PM-04_28_34
Theory : cubical!type!theory
Home
Index