Nuprl Lemma : csm-path-eta

[pth,s:Top].  ((path-eta(pth))s ((pth)p)s (q)s)


Proof




Definitions occuring in Statement :  path-eta: path-eta(pth) cubicalpath-app: pth r cc-snd: q cc-fst: p csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-eta: path-eta(pth) top: Top
Lemmas referenced :  csm-cubicalpath-app top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis sqequalAxiom because_Cache

Latex:
\mforall{}[pth,s:Top].    ((path-eta(pth))s  \msim{}  ((pth)p)s  @  (q)s)



Date html generated: 2017_01_10-AM-08_54_53
Last ObjectModification: 2016_12_16-PM-04_28_34

Theory : cubical!type!theory


Home Index