Nuprl Lemma : csm-pathtype-comp
∀[G,A,cA,H,tau:Top].  ((pathtype-comp(G;A;cA))tau ~ pathtype-comp(H;(A)tau;(cA)tau))
Proof
Definitions occuring in Statement : 
pathtype-comp: pathtype-comp(G;A;cA)
, 
csm-comp-structure: (cA)tau
, 
csm-ap-type: (AF)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-comp-structure: (cA)tau
, 
pathtype-comp: pathtype-comp(G;A;cA)
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
csm+: tau+
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
csm-ap-type: (AF)s
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[G,A,cA,H,tau:Top].    ((pathtype-comp(G;A;cA))tau  \msim{}  pathtype-comp(H;(A)tau;(cA)tau))
Date html generated:
2018_05_23-AM-10_58_59
Last ObjectModification:
2018_05_20-PM-08_00_48
Theory : cubical!type!theory
Home
Index