Nuprl Lemma : csm-pathtype-comp

[G,A,cA,H,tau:Top].  ((pathtype-comp(G;A;cA))tau pathtype-comp(H;(A)tau;(cA)tau))


Proof




Definitions occuring in Statement :  pathtype-comp: pathtype-comp(G;A;cA) csm-comp-structure: (cA)tau csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  csm-comp-structure: (cA)tau pathtype-comp: pathtype-comp(G;A;cA) cc-snd: q cc-fst: p csm-ap-term: (t)s csm+: tau+ csm-comp: F csm-ap: (s)x csm-ap-type: (AF)s csm-adjoin: (s;u) compose: g uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[G,A,cA,H,tau:Top].    ((pathtype-comp(G;A;cA))tau  \msim{}  pathtype-comp(H;(A)tau;(cA)tau))



Date html generated: 2018_05_23-AM-10_58_59
Last ObjectModification: 2018_05_20-PM-08_00_48

Theory : cubical!type!theory


Home Index