Step
*
of Lemma
csm-presw
No Annotations
ā[G:jā¢]. ā[phi:{G ⢠_:š½}]. ā[A,T:{G.š ⢠_}]. ā[f:{G.š ⢠_:(T ā¶ A)}]. ā[t:{G.š, (phi)p ⢠_:T}].
ā[t0:{G ⢠_:(T)[0(š)][phi |ā¶ t[0]]}]. ā[cT:G.š ⢠Compositon(T)]. ā[H:jā¢]. ā[s:H jā¶ G].
((presw(G;phi;f;t;t0;cT))s+ = presw(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+) ā {H.š ⢠_:(A)s+})
BY
{ (Auto
THEN Unfold `presw` 0
THEN (RWO "csm-cubical-app" 0 THENA Auto)
THEN (GenConcl ā(f)s+ = g ā {H.š ⢠_:((T)s+ ā¶ (A)s+)}āā
THENA Auto)
THEN EqCDA) }
1
.....subterm..... T:t
2:n
1. G : CubicalSet{j}
2. phi : {G ⢠_:š½}
3. A : {G.š ⢠_}
4. T : {G.š ⢠_}
5. f : {G.š ⢠_:(T ā¶ A)}
6. t : {G.š, (phi)p ⢠_:T}
7. t0 : {G ⢠_:(T)[0(š)][phi |ā¶ t[0]]}
8. cT : G.š ⢠Compositon(T)
9. H : CubicalSet{j}
10. s : H jā¶ G
11. g : {H.š ⢠_:((T)s+ ā¶ (A)s+)}
12. (f)s+ = g ā {H.š ⢠_:((T)s+ ā¶ (A)s+)}
⢠(pres-v(G;phi;t;t0;cT))s+ = pres-v(H;(phi)s;(t)s+;(t0)s;(cT)s+) ā {H.š ⢠_:(T)s+}
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. \mforall{}[phi:\{G \mvdash{} \_:\mBbbF{}\}]. \mforall{}[A,T:\{G.\mBbbI{} \mvdash{} \_\}]. \mforall{}[f:\{G.\mBbbI{} \mvdash{} \_:(T {}\mrightarrow{} A)\}]. \mforall{}[t:\{G.\mBbbI{}, (phi)p \mvdash{} \_:T\}].
\mforall{}[t0:\{G \mvdash{} \_:(T)[0(\mBbbI{})][phi |{}\mrightarrow{} t[0]]\}]. \mforall{}[cT:G.\mBbbI{} \mvdash{} Compositon(T)]. \mforall{}[H:j\mvdash{}]. \mforall{}[s:H j{}\mrightarrow{} G].
((presw(G;phi;f;t;t0;cT))s+ = presw(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+))
By
Latex:
(Auto
THEN Unfold `presw` 0
THEN (RWO "csm-cubical-app" 0 THENA Auto)
THEN (GenConcl \mkleeneopen{}(f)s+ = g\mkleeneclose{}\mcdot{} THENA Auto)
THEN EqCDA)
Home
Index