Nuprl Lemma : csm-presw

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 ⊢ Compositon(T)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((presw(G;phi;f;t;t0;cT))s+ presw(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+) ∈ {H.𝕀 ⊢ _:(A)s+})


Proof




Definitions occuring in Statement :  presw: presw(G;phi;f;t;t0;cT) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presw: presw(G;phi;f;t;t0;cT) subtype_rel: A ⊆B csm+: tau+ csm-comp: F uimplies: supposing a all: x:A. B[x] implies:  Q squash: T true: True csm-comp-structure: (cA)tau constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  csm-cubical-app csm-ap-term_wf cube-context-adjoin_wf csm-ap-type_wf interval-type_wf cubical-fun_wf csm+_wf cube_set_map_cumulativity-i-j subtype_rel-equal csm-interval-type cubical_set_cumulativity-i-j csm+_wf_interval cubical-term-eqcd csm-cubical-fun cubical-app_wf_fun istype-cubical-term cube_set_map_wf composition-structure_wf constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 partial-term-0_wf context-subset_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cubical-type_wf cubical_set_wf csm-pres-v
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis instantiate hypothesisEquality applyEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination inhabitedIsType lambdaFormation_alt lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed equalityIstype independent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies applyLambdaEquality setElimination rename

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  \mvdash{}  Compositon(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((presw(G;phi;f;t;t0;cT))s+  =  presw(H;(phi)s;(f)s+;(t)s+;(t0)s;(cT)s+))



Date html generated: 2020_05_20-PM-05_27_28
Last ObjectModification: 2020_04_21-PM-01_28_37

Theory : cubical!type!theory


Home Index