Nuprl Lemma : csm-pres-v

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[T:{G.𝕀 ⊢ _}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}]. ∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}].
[cT:G.𝕀 ⊢ Compositon(T)]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((pres-v(G;phi;t;t0;cT))s+ pres-v(H;(phi)s;(t)s+;(t0)s;(cT)s+) ∈ {H.𝕀 ⊢ _:(T)s+[((phi)s)p |⟶ (t)s+]})


Proof




Definitions occuring in Statement :  pres-v: pres-v(G;phi;t;t0;cT) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] pres-v: pres-v(G;phi;t;t0;cT) member: t ∈ T subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  csm-fill_term cube_set_map_wf composition-structure_wf cube-context-adjoin_wf interval-type_wf constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j partial-term-0_wf istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis universeIsType inhabitedIsType instantiate applyEquality sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  \mvdash{}  Compositon(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((pres-v(G;phi;t;t0;cT))s+  =  pres-v(H;(phi)s;(t)s+;(t0)s;(cT)s+))



Date html generated: 2020_05_20-PM-05_26_58
Last ObjectModification: 2020_04_18-PM-10_57_46

Theory : cubical!type!theory


Home Index