Nuprl Lemma : csm-univ-comp

[s:Top]. ((univ-comp{i:l}())s univ-comp{i:l}())


Proof




Definitions occuring in Statement :  univ-comp: univ-comp{i:l}() csm-composition: (comp)sigma uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  univ-comp: univ-comp{i:l}() comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) canonical-section: canonical-section(Gamma;A;I;rho;a) context-map: <rho> csm-composition: (comp)sigma cubical-universe: c𝕌 compU: compU() uall: [x:A]. B[x] member: t ∈ T cube-set-restriction: f(s) pi2: snd(t) trivial-cube-set: () it: nil: []
Lemmas referenced :  void-list-equality nil_wf istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis voidEquality because_Cache axiomSqEquality

Latex:
\mforall{}[s:Top].  ((univ-comp\{i:l\}())s  \msim{}  univ-comp\{i:l\}())



Date html generated: 2020_05_20-PM-07_24_19
Last ObjectModification: 2020_04_25-PM-10_03_44

Theory : cubical!type!theory


Home Index