Nuprl Lemma : cube-set-map-is

[A,B:j⊢].
  (A j⟶ {trans:I:fset(ℕ) ⟶ A(I) ⟶ B(I)| 
              ∀I,J:fset(ℕ). ∀g:J ⟶ I.  ((λs.g(trans s)) s.(trans g(s))) ∈ (A(I) ⟶ B(J)))} )


Proof




Definitions occuring in Statement :  cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  psc-map-is cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[A,B:j\mvdash{}].
    (A  j{}\mrightarrow{}  B  \msim{}  \{trans:I:fset(\mBbbN{})  {}\mrightarrow{}  A(I)  {}\mrightarrow{}  B(I)| 
                            \mforall{}I,J:fset(\mBbbN{}).  \mforall{}g:J  {}\mrightarrow{}  I.    ((\mlambda{}s.g(trans  I  s))  =  (\mlambda{}s.(trans  J  g(s))))\}  )



Date html generated: 2020_05_20-PM-01_42_46
Last ObjectModification: 2020_04_03-PM-03_34_35

Theory : cubical!type!theory


Home Index