Nuprl Lemma : cube_set_map_cumulativity

[G,H:j⊢].  (H j⟶ G ⊆cube_set_map{j':l}(H; G))


Proof




Definitions occuring in Statement :  cube_set_map: A ⟶ B cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B
Lemmas referenced :  psc_map_cumulativity cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[G,H:j\mvdash{}].    (H  j{}\mrightarrow{}  G  \msubseteq{}r  cube\_set\_map\{j':l\}(H;  G))



Date html generated: 2020_05_20-PM-01_40_49
Last ObjectModification: 2020_04_16-PM-05_34_32

Theory : cubical!type!theory


Home Index