Nuprl Lemma : cube_set_map_cumulativity
∀[G,H:j⊢].  (H j⟶ G ⊆r cube_set_map{j':l}(H; G))
Proof
Definitions occuring in Statement : 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube_set_map: A ⟶ B
Lemmas referenced : 
psc_map_cumulativity, 
cube-cat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule
Latex:
\mforall{}[G,H:j\mvdash{}].    (H  j{}\mrightarrow{}  G  \msubseteq{}r  cube\_set\_map\{j':l\}(H;  G))
Date html generated:
2020_05_20-PM-01_40_49
Last ObjectModification:
2020_04_16-PM-05_34_32
Theory : cubical!type!theory
Home
Index