Nuprl Lemma : psc_map_cumulativity
∀[C:SmallCategory]. ∀[G,H:ps_context{j:l}(C)].  (psc_map{j:l}(C; H; G) ⊆r psc_map{j':l}(C; H; G))
Proof
Definitions occuring in Statement : 
psc_map: A ⟶ B, 
ps_context: __⊢, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
small-category: SmallCategory, 
ps_context: __⊢, 
cat-functor: Functor(C1;C2), 
functor-ob: ob(F), 
type-cat: TypeCat, 
op-cat: op-cat(C), 
spreadn: spread4, 
all: ∀x:A. B[x], 
pi1: fst(t), 
and: P ∧ Q, 
squash: ↓T, 
prop: ℙ, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
arrow_pair_lemma, 
cat_ob_pair_lemma, 
cat_id_tuple_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
compose_wf, 
subtype_rel_self, 
iff_weakening_equal, 
psc_map_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
dependent_set_memberEquality_alt, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
lambdaFormation_alt, 
applyEquality, 
instantiate, 
imageElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
functionIsType, 
equalityIstype
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[G,H:ps\_context\{j:l\}(C)].    (psc\_map\{j:l\}(C;  H;  G)  \msubseteq{}r  psc\_map\{j':l\}(C;  H;  G))
Date html generated:
2020_05_20-PM-01_23_51
Last ObjectModification:
2020_04_16-PM-05_34_06
Theory : presheaf!models!of!type!theory
Home
Index