Nuprl Lemma : cubical-equiv-subset
∀[X,T,A,phi:Top].  (Equiv(T;A) ~ Equiv(T;A))
Proof
Definitions occuring in Statement : 
cubical-equiv: Equiv(T;A)
, 
context-subset: Gamma, phi
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cubical-equiv: Equiv(T;A)
, 
is-cubical-equiv: IsEquiv(T;A;w)
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
contractible-type-subset2, 
top_wf, 
cubical-sigma-subset, 
cubical-fun-subset, 
cubical-pi-subset, 
cubical-fiber-subset-adjoin2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[X,T,A,phi:Top].    (Equiv(T;A)  \msim{}  Equiv(T;A))
Date html generated:
2017_01_10-AM-08_57_23
Last ObjectModification:
2016_12_11-PM-02_18_07
Theory : cubical!type!theory
Home
Index