Nuprl Lemma : cubical-fun-comp_wf

[X:j⊢]. ∀[A,B,C:{X ⊢ _}]. ∀[g:{X ⊢ _:(A ⟶ B)}]. ∀[f:{X ⊢ _:(B ⟶ C)}].  ((f g) ∈ {X ⊢ _:(A ⟶ C)})


Proof




Definitions occuring in Statement :  cubical-fun-comp: (f g) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat all: x:A. B[x] cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cubical-fun-comp: (f g) presheaf-fun-comp: (f g) cubical-lam: cubical-lam(X;b) presheaf-lam: presheaf-lam(X;b) cubical-lambda: b) presheaf-lambda: b) cubical-app: app(w; u) presheaf-app: app(w; u) csm-ap-term: (t)s pscm-ap-term: (t)s csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p cc-snd: q psc-snd: q cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u)
Lemmas referenced :  presheaf-fun-comp_wf cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B,C:\{X  \mvdash{}  \_\}].  \mforall{}[g:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].  \mforall{}[f:\{X  \mvdash{}  \_:(B  {}\mrightarrow{}  C)\}].
    ((f  o  g)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  C)\})



Date html generated: 2020_05_20-PM-02_26_08
Last ObjectModification: 2020_04_03-PM-08_36_18

Theory : cubical!type!theory


Home Index