Nuprl Lemma : presheaf-fun-comp_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B,E:{X ⊢ _}]. ∀[g:{X ⊢ _:(A ⟶ B)}]. ∀[f:{X ⊢ _:(B ⟶ E)}].
  ((f g) ∈ {X ⊢ _:(A ⟶ E)})


Proof




Definitions occuring in Statement :  presheaf-fun-comp: (f g) presheaf-fun: (A ⟶ B) presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-fun-comp: (f g) subtype_rel: A ⊆B uimplies: supposing a squash: T
Lemmas referenced :  presheaf-lam_wf presheaf-app_wf_fun psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-ap-type_wf psc-fst_wf pscm-ap-term_wf presheaf-fun_wf subtype_rel-equal presheaf-term_wf psc-snd_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis because_Cache independent_isectElimination lambdaEquality_alt imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B,E:\{X  \mvdash{}  \_\}].  \mforall{}[g:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].
\mforall{}[f:\{X  \mvdash{}  \_:(B  {}\mrightarrow{}  E)\}].
    ((f  o  g)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  E)\})



Date html generated: 2020_05_20-PM-01_31_19
Last ObjectModification: 2020_04_02-PM-05_52_05

Theory : presheaf!models!of!type!theory


Home Index