Nuprl Lemma : presheaf-fun-comp_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B,E:{X ⊢ _}]. ∀[g:{X ⊢ _:(A ⟶ B)}]. ∀[f:{X ⊢ _:(B ⟶ E)}].
  ((f o g) ∈ {X ⊢ _:(A ⟶ E)})
Proof
Definitions occuring in Statement : 
presheaf-fun-comp: (f o g)
, 
presheaf-fun: (A ⟶ B)
, 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-fun-comp: (f o g)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
Lemmas referenced : 
presheaf-lam_wf, 
presheaf-app_wf_fun, 
psc-adjoin_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
pscm-ap-type_wf, 
psc-fst_wf, 
pscm-ap-term_wf, 
presheaf-fun_wf, 
subtype_rel-equal, 
presheaf-term_wf, 
psc-snd_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B,E:\{X  \mvdash{}  \_\}].  \mforall{}[g:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].
\mforall{}[f:\{X  \mvdash{}  \_:(B  {}\mrightarrow{}  E)\}].
    ((f  o  g)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  E)\})
Date html generated:
2020_05_20-PM-01_31_19
Last ObjectModification:
2020_04_02-PM-05_52_05
Theory : presheaf!models!of!type!theory
Home
Index