Nuprl Lemma : presheaf-lam_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[b:{X.A ⊢ _:(B)p}].
  (presheaf-lam(X;b) ∈ {X ⊢ _:(A ⟶ B)})
Proof
Definitions occuring in Statement : 
presheaf-lam: presheaf-lam(X;b)
, 
presheaf-fun: (A ⟶ B)
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
presheaf-term: {X ⊢ _:A}
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-lam: presheaf-lam(X;b)
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
Lemmas referenced : 
presheaf-fun-as-presheaf-pi, 
presheaf-lambda_wf, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
pscm-ap-type_wf, 
psc-adjoin_wf, 
psc-fst_wf, 
small-category-cumulativity-2, 
presheaf-term_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:(B)p\}].
    (presheaf-lam(X;b)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\})
Date html generated:
2020_05_20-PM-01_30_22
Last ObjectModification:
2020_04_02-PM-03_02_15
Theory : presheaf!models!of!type!theory
Home
Index