Nuprl Lemma : presheaf-lam_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[b:{X.A ⊢ _:(B)p}].
  (presheaf-lam(X;b) ∈ {X ⊢ _:(A ⟶ B)})


Proof




Definitions occuring in Statement :  presheaf-lam: presheaf-lam(X;b) presheaf-fun: (A ⟶ B) psc-fst: p psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-lam: presheaf-lam(X;b) subtype_rel: A ⊆B and: P ∧ Q
Lemmas referenced :  presheaf-fun-as-presheaf-pi presheaf-lambda_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-ap-type_wf psc-adjoin_wf psc-fst_wf small-category-cumulativity-2 presheaf-term_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule instantiate applyEquality because_Cache hypothesis dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination lambdaEquality_alt hyp_replacement universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:(B)p\}].
    (presheaf-lam(X;b)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\})



Date html generated: 2020_05_20-PM-01_30_22
Last ObjectModification: 2020_04_02-PM-03_02_15

Theory : presheaf!models!of!type!theory


Home Index