Nuprl Lemma : presheaf-app_wf_fun

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[w:{X ⊢ _:(A ⟶ B)}]. ∀[u:{X ⊢ _:A}].
  (app(w; u) ∈ {X ⊢ _:B})


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) presheaf-fun: (A ⟶ B) presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q squash: T true: True
Lemmas referenced :  presheaf-fun-as-presheaf-pi presheaf-app_wf pscm-ap-type_wf ps_context_cumulativity2 small-category-cumulativity-2 psc-adjoin_wf presheaf-type-cumulativity2 psc-fst_wf subtype_rel-equal presheaf-term_wf presheaf-fun_wf presheaf-pi_wf pscm-ap-type-fst-id-adjoin presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache instantiate applyEquality hypothesis sqequalRule independent_isectElimination equalitySymmetry dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination lambdaEquality_alt imageElimination Error :memTop,  natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
    (app(w;  u)  \mmember{}  \{X  \mvdash{}  \_:B\})



Date html generated: 2020_05_20-PM-01_31_16
Last ObjectModification: 2020_04_02-PM-05_54_03

Theory : presheaf!models!of!type!theory


Home Index