Nuprl Lemma : cubical-fun-family-discrete

[A,B:Type]. ∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)].
  (cubical-fun-family(X; discr(A); discr(B); I; a)
  {w:J:fset(ℕ) ⟶ f:J ⟶ I ⟶ u:A ⟶ B| ∀J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀u:A.  ((w u) (w f ⋅ u) ∈ B)} 
  ∈ Type)


Proof




Definitions occuring in Statement :  discrete-cubical-type: discr(T) cubical-fun-family: cubical-fun-family(X; A; B; I; a) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cubical-type-at: A(a) presheaf-type-at: A(a) discrete-cubical-type: discr(T) discrete-presheaf-type: discr(T) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f)
Lemmas referenced :  presheaf-fun-family-discrete cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].
    (cubical-fun-family(X;  discr(A);  discr(B);  I;  a)
    =  \{w:J:fset(\mBbbN{})  {}\mrightarrow{}  f:J  {}\mrightarrow{}  I  {}\mrightarrow{}  u:A  {}\mrightarrow{}  B| 
          \mforall{}J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}u:A.    ((w  J  f  u)  =  (w  K  f  \mcdot{}  g  u))\}  )



Date html generated: 2020_05_20-PM-02_34_59
Last ObjectModification: 2020_04_03-PM-08_45_24

Theory : cubical!type!theory


Home Index