Nuprl Lemma : presheaf-fun-family-discrete
∀[C:SmallCategory]. ∀[A,B:Type]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[a:X(I)].
  (presheaf-fun-family(C; X; discr(A); discr(B); I; a)
  = {w:J:cat-ob(C) ⟶ f:(cat-arrow(C) J I) ⟶ u:A ⟶ B| 
     ∀J,K:cat-ob(C). ∀f:cat-arrow(C) J I. ∀g:cat-arrow(C) K J. ∀u:A.
       ((w J f u) = (w K (cat-comp(C) K J I g f) u) ∈ B)} 
  ∈ Type)
Proof
Definitions occuring in Statement : 
discrete-presheaf-type: discr(T)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
discrete-presheaf-type: discr(T)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
presheaf_type_at_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
cat-ob_wf, 
cat-arrow_wf, 
equal_wf, 
cat-comp_wf, 
I_set_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
istype-universe, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
setEquality, 
functionEquality, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
universeIsType, 
instantiate, 
because_Cache, 
universeEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].
    (presheaf-fun-family(C;  X;  discr(A);  discr(B);  I;  a)
    =  \{w:J:cat-ob(C)  {}\mrightarrow{}  f:(cat-arrow(C)  J  I)  {}\mrightarrow{}  u:A  {}\mrightarrow{}  B| 
          \mforall{}J,K:cat-ob(C).  \mforall{}f:cat-arrow(C)  J  I.  \mforall{}g:cat-arrow(C)  K  J.  \mforall{}u:A.
              ((w  J  f  u)  =  (w  K  (cat-comp(C)  K  J  I  g  f)  u))\}  )
Date html generated:
2020_05_20-PM-01_35_43
Last ObjectModification:
2020_04_02-PM-06_35_46
Theory : presheaf!models!of!type!theory
Home
Index