Nuprl Lemma : presheaf-fun-family-discrete

[C:SmallCategory]. ∀[A,B:Type]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[a:X(I)].
  (presheaf-fun-family(C; X; discr(A); discr(B); I; a)
  {w:J:cat-ob(C) ⟶ f:(cat-arrow(C) I) ⟶ u:A ⟶ B| 
     ∀J,K:cat-ob(C). ∀f:cat-arrow(C) I. ∀g:cat-arrow(C) J. ∀u:A.
       ((w u) (w (cat-comp(C) f) u) ∈ B)} 
  ∈ Type)


Proof




Definitions occuring in Statement :  discrete-presheaf-type: discr(T) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] discrete-presheaf-type: discr(T) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) all: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B
Lemmas referenced :  presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma cat-ob_wf cat-arrow_wf equal_wf cat-comp_wf I_set_wf ps_context_wf small-category-cumulativity-2 istype-universe small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis setEquality functionEquality isectElimination hypothesisEquality applyEquality universeIsType instantiate because_Cache universeEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].
    (presheaf-fun-family(C;  X;  discr(A);  discr(B);  I;  a)
    =  \{w:J:cat-ob(C)  {}\mrightarrow{}  f:(cat-arrow(C)  J  I)  {}\mrightarrow{}  u:A  {}\mrightarrow{}  B| 
          \mforall{}J,K:cat-ob(C).  \mforall{}f:cat-arrow(C)  J  I.  \mforall{}g:cat-arrow(C)  K  J.  \mforall{}u:A.
              ((w  J  f  u)  =  (w  K  (cat-comp(C)  K  J  I  g  f)  u))\}  )



Date html generated: 2020_05_20-PM-01_35_43
Last ObjectModification: 2020_04_02-PM-06_35_46

Theory : presheaf!models!of!type!theory


Home Index