Nuprl Lemma : cubical-fun-family_wf

[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  (cubical-fun-family(X; A; B; I; a) ∈ Type)


Proof




Definitions occuring in Statement :  cubical-fun-family: cubical-fun-family(X; A; B; I; a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f)
Lemmas referenced :  presheaf-fun-family_wf cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].    (cubical-fun-family(X;  A;  B;  I;  a)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_59_36
Last ObjectModification: 2020_04_03-PM-08_32_55

Theory : cubical!type!theory


Home Index