Nuprl Lemma : cubical-fun-subset-adjoin

[G,B,phi,T,A:Top].  ((G, phi.B ⊢ T ⟶ A) (G.B ⊢ T ⟶ A))


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi cubical-fun: (A ⟶ B) cube-context-adjoin: X.A uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  cube-context-adjoin: X.A cubical-fun: (A ⟶ B) context-subset: Gamma, phi all: x:A. B[x] member: t ∈ T top: Top cubical-fun-family: cubical-fun-family(X; A; B; I; a) pi1: fst(t) pi2: snd(t) uall: [x:A]. B[x]
Lemmas referenced :  I_cube_pair_redex_lemma cube_set_restriction_pair_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[G,B,phi,T,A:Top].    ((G,  phi.B  \mvdash{}  T  {}\mrightarrow{}  A)  \msim{}  (G.B  \mvdash{}  T  {}\mrightarrow{}  A))



Date html generated: 2018_05_23-AM-09_21_33
Last ObjectModification: 2018_05_20-PM-06_19_45

Theory : cubical!type!theory


Home Index