Nuprl Lemma : cubical-fun-subset-adjoin
∀[G,B,phi,T,A:Top].  ((G, phi.B ⊢ T ⟶ A) ~ (G.B ⊢ T ⟶ A))
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
cubical-fun: (A ⟶ B)
, 
cube-context-adjoin: X.A
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cube-context-adjoin: X.A
, 
cubical-fun: (A ⟶ B)
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[G,B,phi,T,A:Top].    ((G,  phi.B  \mvdash{}  T  {}\mrightarrow{}  A)  \msim{}  (G.B  \mvdash{}  T  {}\mrightarrow{}  A))
Date html generated:
2018_05_23-AM-09_21_33
Last ObjectModification:
2018_05_20-PM-06_19_45
Theory : cubical!type!theory
Home
Index