Step
*
1
of Lemma
cubical-isect-family_wf
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. I : fset(ℕ)
5. a : X(I)
6. w : J:fset(ℕ) ⟶ f:J ⟶ I ⟶ (⋂u:A(f(a)). B((f(a);u)))
7. J : fset(ℕ)
8. K : fset(ℕ)
9. f : J ⟶ I
10. g : K ⟶ J
11. u : A(f(a))
⊢ w K f ⋅ g ∈ B(g((f(a);u)))
BY
{ DoSubsume }
1
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. I : fset(ℕ)
5. a : X(I)
6. w : J:fset(ℕ) ⟶ f:J ⟶ I ⟶ (⋂u:A(f(a)). B((f(a);u)))
7. J : fset(ℕ)
8. K : fset(ℕ)
9. f : J ⟶ I
10. g : K ⟶ J
11. u : A(f(a))
⊢ w K f ⋅ g ∈ ⋂u:A(f ⋅ g(a)). B((f ⋅ g(a);u))
2
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. I : fset(ℕ)
5. a : X(I)
6. w : J:fset(ℕ) ⟶ f:J ⟶ I ⟶ (⋂u:A(f(a)). B((f(a);u)))
7. J : fset(ℕ)
8. K : fset(ℕ)
9. f : J ⟶ I
10. g : K ⟶ J
11. u : A(f(a))
12. (w K f ⋅ g) = (w K f ⋅ g) ∈ (⋂u:A(f ⋅ g(a)). B((f ⋅ g(a);u)))
⊢ (⋂u:A(f ⋅ g(a)). B((f ⋅ g(a);u))) ⊆r B(g((f(a);u)))
Latex:
Latex:
1. X : CubicalSet
2. A : \{X \mvdash{} \_\}
3. B : \{X.A \mvdash{} \_\}
4. I : fset(\mBbbN{})
5. a : X(I)
6. w : J:fset(\mBbbN{}) {}\mrightarrow{} f:J {}\mrightarrow{} I {}\mrightarrow{} (\mcap{}u:A(f(a)). B((f(a);u)))
7. J : fset(\mBbbN{})
8. K : fset(\mBbbN{})
9. f : J {}\mrightarrow{} I
10. g : K {}\mrightarrow{} J
11. u : A(f(a))
\mvdash{} w K f \mcdot{} g \mmember{} B(g((f(a);u)))
By
Latex:
DoSubsume
Home
Index