Nuprl Lemma : cubical-isect-family_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  (cubical-isect-family(X;A;B;I;a) ∈ Type)


Proof




Definitions occuring in Statement :  cubical-isect-family: cubical-isect-family(X;A;B;I;a) cube-context-adjoin: X.A cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-isect-family: cubical-isect-family(X;A;B;I;a) all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] prop: top: Top uimplies: supposing a squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  fset_wf nat_wf names-hom_wf cubical-type-at_wf cube-set-restriction_wf cube-context-adjoin_wf cc-adjoin-cube_wf all_wf equal_wf cubical-type-ap-morph_wf I_cube_wf cubical-type_wf cubical_set_wf nh-comp_wf cc-adjoin-cube-restriction subtype_rel-equal squash_wf true_wf cube-set-restriction-comp iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality isectEquality because_Cache dependent_functionElimination lambdaEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality voidElimination voidEquality independent_isectElimination instantiate imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].
    (cubical-isect-family(X;A;B;I;a)  \mmember{}  Type)



Date html generated: 2017_10_05-AM-10_02_08
Last ObjectModification: 2017_07_28-AM-11_14_29

Theory : cubical!type!theory


Home Index