Nuprl Lemma : cubical-isect-family_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  (cubical-isect-family(X;A;B;I;a) ∈ Type)
Proof
Definitions occuring in Statement : 
cubical-isect-family: cubical-isect-family(X;A;B;I;a)
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-isect-family: cubical-isect-family(X;A;B;I;a)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
top: Top
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
fset_wf, 
nat_wf, 
names-hom_wf, 
cubical-type-at_wf, 
cube-set-restriction_wf, 
cube-context-adjoin_wf, 
cc-adjoin-cube_wf, 
all_wf, 
equal_wf, 
cubical-type-ap-morph_wf, 
I_cube_wf, 
cubical-type_wf, 
cubical_set_wf, 
nh-comp_wf, 
cc-adjoin-cube-restriction, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
cube-set-restriction-comp, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
isectEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].
    (cubical-isect-family(X;A;B;I;a)  \mmember{}  Type)
Date html generated:
2017_10_05-AM-10_02_08
Last ObjectModification:
2017_07_28-AM-11_14_29
Theory : cubical!type!theory
Home
Index