Step
*
of Lemma
cubical-refl-p
No Annotations
∀[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (refl((a)p) = (refl(a))p ∈ {X.B ⊢ _:((Path_A a a))p})
BY
{ (Intros
   THEN (InstLemma `csm-cubical-refl` [⌜parm{i|j}⌝; ⌜parm{i}⌝;⌜X⌝;⌜A⌝;⌜a⌝;⌜X.B⌝;⌜p⌝]⋅ THENA Auto)
   THEN InferEqualTypeUp
   THEN Try (Trivial)
   THEN EqCDA) }
1
.....subterm..... T:t
2:n
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. B : {X ⊢ _}
4. a : {X ⊢ _:A}
5. (refl(a))p = refl((a)p) ∈ {X.B ⊢ _:(Path_(A)p (a)p (a)p)}
⊢ (X.B ⊢ Path_(A)p (a)p (a)p) = ((Path_A a a))p ∈ cubical-type{[j' | i']:l}(X.B)
Latex:
Latex:
No  Annotations
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (refl((a)p)  =  (refl(a))p)
By
Latex:
(Intros
  THEN  (InstLemma  `csm-cubical-refl`  [\mkleeneopen{}parm\{i|j\}\mkleeneclose{};  \mkleeneopen{}parm\{i\}\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}X.B\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  InferEqualTypeUp
  THEN  Try  (Trivial)
  THEN  EqCDA)
Home
Index