Nuprl Lemma : cubical-refl-p

[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (refl((a)p) (refl(a))p ∈ {X.B ⊢ _:((Path_A a))p})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) path-type: (Path_A b) cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-cubical-refl cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf cubical-term_wf squash_wf true_wf cubical-type_wf cubical_set_wf csm-ap-type_wf path-type_wf equal_wf istype-universe path-type-p subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeEquality independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (refl((a)p)  =  (refl(a))p)



Date html generated: 2020_05_20-PM-03_21_35
Last ObjectModification: 2020_04_07-PM-03_29_00

Theory : cubical!type!theory


Home Index